

Introduction to Computational Fluid Dynamics (CFD)

Lecture 1, 2 (Part 2)

Agenda – Lecture 1

- Approaches to solving engineering problems
- o CFD (What? Why? How?)
- Fundamental equations

Investigation approaches

Experimental investigation

- Most reliable information
- Can use both full-scale and small-scale tests
- Not free from errors

Theoretical calculation

- Usually set of differential equations
- Solution exists only for a narrow range of practical problems

Numerical calculation (CFD)

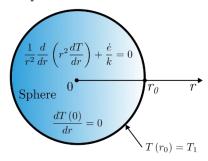
- Finite number of domain elements (discretization)
- Set of algebraic equations
- Solution exists almost for each practical applications

FACULTY OF MECHANICAL ENGINEERING <u>Tul</u>

Strengths and weaknesses of theoretical approach

Advantages (Strengths)

- Speed
- Low cost
- Information completeness
- Ability to simulate both ideal and real conditions


Disadvantages (Weaknesses)

- Mathematical model
- Problem complexities

Remember: Experiment leads, computation follows.

Why use numerical methods?

Problem: Heat conduction in a sphere

Governing differential equation:

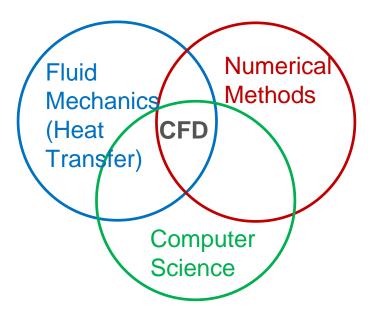
$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) + \frac{\dot{e}}{k} = 0$$

Solution:

$$T(r) = T_1 + \frac{\dot{e}}{6k} \left(r_0^2 - r^2 \right)$$

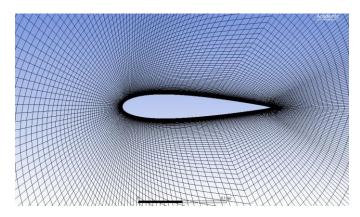
Exact (analytical) solution of model, but crude solution of actual problem

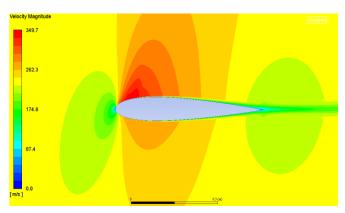
Geometry of the problem Simplified model Realistic model A sphere


Approximate (numerical) solution of model. but accurate solution of actual problem

An ellipse

Why prefer numerical approach to analytical?


- o **Limitations** (geometry, variable HTC, temperature dependent k, ...)
- Better modelling ("approximate" solution of a realistic model is usually more accurate than the "exact" solution of a crude mathematical model)
- Flexibility (parametric studies to answer some "what-if" questions)
- Complications (even when analytical solutions are available, they can be intimidating)
- Human nature (ready availability of high-powered computers with sophisticated software packages)


What is CFD?

What is CFD?

- Numerical analysis and computers come into play.
- Differential equations → Algebraic equations → solution
- The application of CFD to practical problems is often limited by the computational power available.

FACULTY OF MECHANICAL ENGINEERING <u>Tul</u>

The black box idea

- Valid especially for commercial packages (Ansys Fluent, CFX, Star CCM+).
- More sophisticated codes are also available (OpenFOAM).
- User inputs (geometry, mesh, boundary conditions, material properties, solver settings).
- Turn the crank, and get the results (color pictures).

Set of Fundamental Equations

1. Conservation of mass

$$\frac{\partial \rho}{\partial t} + \nabla \cdot [\rho \mathbf{U}] = 0$$

(1)

2. Conservation of momentum

$$\frac{\partial [\rho \mathbf{U}]}{\partial t} + \nabla \cdot \{\rho \mathbf{U} \mathbf{U}\} = [\mathbf{f}_{\mathbf{s}}] + [\mathbf{f}_{\mathbf{V}}]$$

(2)

3. Conservation of energy

$$\frac{\partial (\rho e_{total})}{\partial t} + \nabla \cdot [\rho e_{total} \textbf{U}] = \textbf{f}_{\textbf{s}} \cdot \textbf{U} + \textbf{f}_{\textbf{V}} \cdot \textbf{U} - \nabla \cdot [\textbf{q}]$$

(3)

Note:

$$e_{total} = e_{internal} + \frac{1}{2}\mathbf{U} \cdot \mathbf{U}$$

$$\mathbf{q} = -\mathbf{k}\nabla\mathbf{T}$$

(5)

Set of Fundamental Equations

1. Conservation of mass

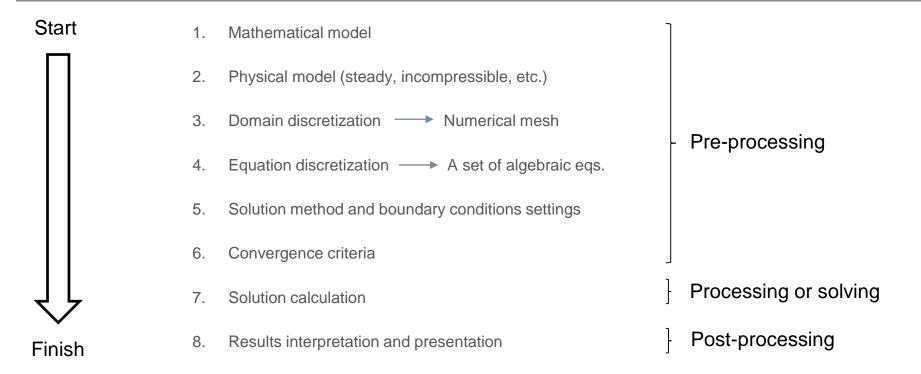
$$\frac{\partial \rho}{\partial t} + \nabla \cdot [\rho \mathbf{U}] = 0 \tag{6}$$

2. Conservation of momentum

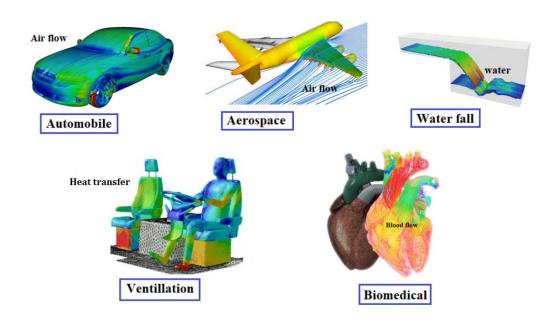
$$\frac{\partial[\rho \mathbf{U}]}{\partial t} + \nabla \cdot \{\rho \mathbf{U}\mathbf{U}\} = [\mathbf{f}_{\mathbf{s}}] + [\mathbf{f}_{\mathbf{V}}] = \nabla \cdot \mathbf{\sigma} + [\rho \mathbf{g}] = -\nabla p + \nabla \cdot \mathbf{\tau} + [\rho \mathbf{g}]$$
(7)

3. Conservation of energy

$$\frac{\partial(\rho e_{\text{total}})}{\partial t} + \nabla \cdot [\rho e_{\text{total}} \mathbf{U}] = \mathbf{f_s} \cdot \mathbf{U} + \mathbf{f_V} \cdot \mathbf{U} - \nabla \cdot [\mathbf{q}] = -\nabla \cdot [p\mathbf{U}] + \nabla \cdot [\mathbf{\tau} \cdot \mathbf{U}] + [\rho \mathbf{g}] \cdot \mathbf{U} + \nabla \cdot [k\nabla T]$$
(8)

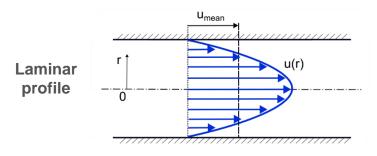

Summary – Lecture 1

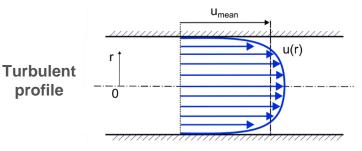
- CFD can be a handy tool (What? Why? How?)
- Governing equations: mass, momentum (Newton's 2nd law), and energy (1st law of thermodynamics)


Agenda – Lecture 2

- Numerical procedure
- Some CFD applications
- Turbulence in CFD

Numerical Simulation Procedure

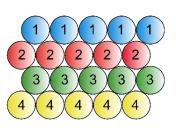

Applications of CFD

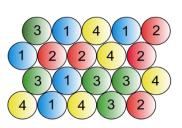


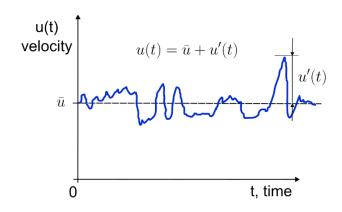
Source: https://cfdflowengineering.com/scope-of-cfd-modeling-career-and-job-opportunities/

Treatment of turbulence in CFD

- o Flow can be laminar, turbulent (more frequent), or transitional (complex to solve).
- Most flows in practice are turbulent.
- Laminar solutions are almost exact (Mesh resolution, BCs).
- Resolution of complex turbulent flows is challenging and not feasible these days.




Treatment of turbulence in CFD (2)


- o Direct Numerical Simulation (DNS) is not useful for practical engineering problems.
- o It would require a very fine mesh to capture all turbulent motions.
- o Therefore, we must rely on experiments and empirical correlations.

Before turbulence

After turbulence

Treatment of turbulence in CFD (3)

- Turbulent flows are characterized by random and rapid fluctuations of swirling regions (= eddies).
- We need to capture these turbulent structures somehow.
- One of the options how to do it is to get inspiration in molecular motion fluctuations.
- o In laminar flows, the molecular viscosity causes the shear stress.
- In turbulent flows, this shear stress is still present and additional stresses arise from the turbulent fluctuations.

$$\tau_{\text{total}} = \tau_{\text{laminar}} + \tau_{\text{turbulent}}$$
 (9)

Treatment of turbulence in CFD (4)

The laminar component of the total shear stress can be expressed as:

$$\tau_{\text{laminar}} = -\mu \frac{\partial \overline{U}}{\partial r} = -\mu \frac{\partial \overline{U}}{\partial y} \tag{10}$$

o In an analogous manner, we can express the turbulent component:

$$\mathbf{\tau}_{\text{turbulent}} = -\mu_{\text{t}} \frac{\partial \overline{\mathbf{U}}}{\partial \mathbf{r}} = -\mu_{\text{t}} \frac{\partial \overline{\mathbf{U}}}{\partial \mathbf{y}} \tag{11}$$

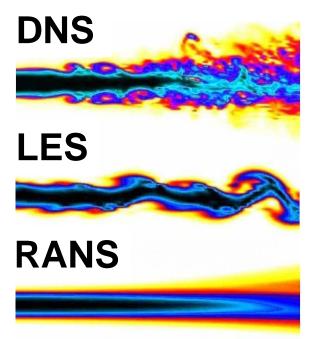
- O The problem here is that we do **not have \mu_t**, which is not a material constant as μ , but rather a property of turbulent flow!
- Note that the turbulent shear stress is often also expressed as:

$$\tau_{\text{turbulent}} = -\rho \overline{\mathbf{u}'\mathbf{v}'}$$
 (12)

Treatment of turbulence in CFD (5)

- Most simulations require a model (a coarser mesh can be used).
- No universal model exists for all turbulent flows.
- o Turbulence models aim to represent the effect of turbulence via some additional terms or equations.
- Models try to capture the mixing and diffusion caused by turbulent eddies.
- o CFD results are only as good as the turbulence model used.

Turbulence models in CFD


of modeling Number of mesh cells Computational cost **DNS LES** Importance Hybrid RANS-LES **URANS RANS**

DNS - Direct Numerical Simulation LES - Large Eddy Simulation

RANS - Reynolds-Averaged Navier-Stokes URANS - Unsteady (transient) RANS

Turbulence models in CFD (2)

Computational cost mesh o Number

Importance of modeling

DNS - Direct Numerical Simulation LES - Large Eddy Simulation

RANS - Reynolds-Averaged Navier-Stokes URANS - Unsteady (transient) RANS

Summary – Lecture 2

- Computational process step by step (from pre- to post-processing)
- Some applications
- Treating turbulence phenomena

Thank you.